

Bacillus halodurans RSCVS-PF21 an alkaline protease producing bacteria from poultry farm soil

Chauhan Rakesh Singh^{1*} and Mishra Rahasya Mani^{1,2}

1. Centre for Biotechnology Studies, Awadhesh Pratap Singh University, Rewa, 486003, Madhya Pradesh, INDIA

2. Department of Environmental Biology, Awadhesh Pratap Singh University, Rewa, 486003, Madhya Pradesh, INDIA

*rakesh.s.chauhan1@gmail.com

Abstract

The aim of the study was to investigate potent alkaline protease producing indigenous bacterial strains from alkaline soils of Vindhya region of Madhya Pradesh, India. Accordingly, isolation and screening of alkaline protease producing alkaliphilic bacteria was performed from different habitats of Vindhya region of Madhya Pradesh, India. Selection and identification of promising alkaline protease producing isolates, enzyme activity assay and partial characterization of crude alkaline protease filtrate were done.

Many alkaline proteases producing bacterial isolates were isolated from poultry farm soils of Vindhya region, Madhya Pradesh, India. Out of several proteolytic isolates, most potent new bacterial strain was identified as *Bacillus halodurans RSCVS-PF21* (Genbank Accession No. MT279908) based on phenotypic, biochemical and molecular characterizations. Crude alkaline protease was stable and effective at high temperature. It was also highly stable in different organic solvents, so it can be used in many industrial processes.

Keywords: *Bacillus halodurans RSCVS-PF21*, Alkaline proteases, Bacteria, Poultry farm soil.

Introduction

Proteases (EC 3.4) comes under class of hydrolases of enzyme classification, that hydrolyses proteins into smaller polypeptides or single amino acids. They are the most dominant group of enzymes from the industry point of view, constituting about sixty percent of the total enzyme market⁴⁴. Proteases from microorganisms have been the most widely explored enzymes since the advent of enzymology⁴⁰. Microorganisms have been known to produce both intracellular and extracellular proteases commercially. They account for approximately two-third share of the total commercial protease sale around the globe⁶.

Enzymes have gained attention not only due to their critical role in metabolic activities in the organisms but also due to their wide applications in industries³⁹ such as food, detergent, bakery, leather, pharma, infant formulas etc. due to their features like production ease, thermal stability and wide pH range applications¹⁶. Alkaline proteases (EC.3.4.21-24, 99) are the most frequently used industrial enzyme among all due to their comparatively high activity

and greater stability at high pH¹⁸. Alcalase, Esperase, Savinase, Biofeed pro, Durazym, Protosol, Novozyme, Subtilisin, Maxatase, Maxacal are some brand names of alkaline protease used for different purposes such as in detergent industry, silk degumming, textile, food, feed etc.⁷. Alkaline proteases have been isolated from diverse sources. It is believed that extremophile microorganisms produce more stable alkaline proteases.

Extremophilic microorganisms live in extreme ecological niches such as low or high temperatures, extremes of pH (pH 0-3 or 9-12), high pressures, high salt concentrations (5-30%)³⁴. The proteases produced by microbes present in normal environment are usually unstable under extreme conditions, even with several attempts of physicochemical treatments, protein engineering and gene-shufflings⁴⁴. Microorganisms living in extreme habitats are believed to produce proteases which are stable in those situations⁴⁴ but limited information is available reporting such microorganisms⁴¹. Novel microorganisms may yield novel enzymes with new combinations of properties e.g. alkaline proteases with halophilic and/or thermotolerant properties.

Temperature has a strong influence over the stability and catalytic activity of alkaline protease enzyme. Bacterial alkaline proteases have optimum temperatures of 50-60°C, however, higher temperature has also been reported for some bacterial alkaline proteases e.g. *Bacillus licheniformis* MP1 at 70°C²⁶ and *Bacillus* sp. MLA 64 at 95°C³². In contrast, some alkaline proteases have optima at lower temperatures (37-40°C)⁴².

Alkaline proteases are known to be active over a wide range of pH (6-12). The pH optima of these usually lie within pH 9-11²⁹. Alkaline proteases from *Bacillus* spp. have optimal pH values usually at pH 9-10. However, there are also reports on alkaline proteases with higher optimal pH values e.g. *Streptomyces* sp. at pH 11.5⁴⁷ and *Bacillus clausii* at pH 12²⁷.

Enzyme inhibition studies give crucial insights into the nature of enzyme action. Effects of various inhibitors such as phenyl methyl sulfonyl fluoride (PMSF), ethylenediamine tetraacetic acid (EDTA), di-isopropyl fluorophosphate (DFP), 1,10-phenanthroline, ethylene glycol tetraacetic acid (EGTA) and iodoacetic acid (IAA) have been studied to determine the class of the protease. Effect of organic solvents was reported by many studies. Aksoy et al³ studied extracellular serine protease enzymes produced by *Thermoactinomyces* strains. Kumar and Bhalla³⁰ reported microbial proteases in peptide synthesis.

Both found that proteases could be used in ester synthesis considering their stability with organic solvents.

Alkaline proteases have high commercial potential accounting for 25% of the world global enzyme market²⁸. These have applications in various sectors such as detergent, food and feed, pharmaceutical, leather, paper and pulp industries, textile, in silver recovery from photographic plates and in waste treatment.

Material and Methods

Chemicals: All the chemicals and reagents used in the study were obtained from HiMedia, India and Fisher Scientific, USA.

Collection of Soil Sample, Medium, Isolation and Screening of bacteria: Alkaline soil samples for the isolation of potent alkaline protease producing bacteria were collected from Government Kukkut Palan Kendra (poultry farm) near Chirahula temple, in district headquarters of Rewa of Madhya Pradesh, India. pH of soil samples was in range of 10-11. CPYA solid media was used for isolation and screening and CPYA broth was used for crude enzyme production and enzyme activity analysis¹⁰.

Enzyme Production and Alkaline Protease Activity Analysis: Isolates producing clear zone around the colony in the range of good and excellent were selected for enzyme production under submerged conditions. The resulting cell-free crude filtrate was further used for enzyme assays. Alkaline protease production from these isolates was examined by radial diffusion assay method. The enzyme activity was calculated as relative enzyme activity (REA).

Enzyme Assay: The universal protease activity assay with casein as substrate⁶ was followed with modifications to determine the protease activity of the crude proteases from potential protease producing bacterial strains. Casein (1% w/v) solution was made in 50 mM potassium phosphate buffer (pH 12). The pH of buffer was adjusted with NaOH or HCl. Aliquots of 1 ml of casein solution were equilibrated at 50°C for 15 min in tubes. The assay was commenced by adding of 0.2 ml of crude enzyme filtrate in test reaction mixture but not in reaction mixtures to be used as blanks. All the tubes were incubated at 50°C temperature for 20 min. Consequential tyrosine liberation due to protease activity during this incubation time was measured and compared among different isolates. Trichloro acetic acid was used for termination of enzyme reaction by addition of 2 ml of 10% (TCA) solution in test and blank reaction mixtures both.

Now 0.2 ml of crude enzyme filtrate is also added in blank reaction mixtures to account for the absorbance value of the crude enzyme itself and to ensure that the final volume in each tube is equal. Then reaction mixture was allowed to stand for 30 min. After 30 min incubation, the reaction mixtures were centrifuged at 7000g for 10 min. One ml supernatant of these and one ml of differently diluted

tyrosine standard solutions were added with 5 ml of 2% Na₂CO₃ (alkaline solution) in test tubes and incubated for 10 min. To the above solution, 0.5 ml of Folin-Ciocalteu's reagent working solution (made by mixing one volume of the stock solution and two volumes of distil water) was added and tubes were incubated for 30 min in dark. The colour due to reaction with reagent was measured at 750 nm.

L-tyrosine standard stock solution was prepared having final concentration of 100 µg/ml: Weigh 0.1000 g, L-tyrosine and dissolve in 60 ml hydrochloric acid (1 mol/L). The solution was transferred into a 100 ml volumetric flask and the hydrochloric acid solution (1 mol/L) was added to a total volume of 100 ml. This gave a solution of L-tyrosine of 1 mg/ml. Then mix 10.00 ml of L-tyrosine solution (1 mg/ml) with the hydrochloric acid solution (0.1 mol/L) in a 100 ml volumetric solution. Add the hydrochloric acid solution (0.1 mol/L) to a total volume of 100 ml to give the standard solution of L-tyrosine (100 µg/ml).

This solution was diluted further (to have 0, 20, 40, 60, 80 and 100 µg/ml tyrosine concentrations) in different tubes with distilled water to make the tyrosine standard curve which was used to determine released tyrosine concentration from unknown samples. One unit of protease activity was defined as the amount of enzyme that released 1 µmol tyrosine per ml per minute under the conditions described above. The enzymatic activity was determined with the micro moles of tyrosine released using the formula:

$$\text{Units/ml (Enzyme Activity)} = \frac{(\mu\text{mol tyrosine equivalents released}) \times (\text{Total volume (in ml) of assay})}{(\text{Volume of Enzyme (in ml) used}) \times (\text{Time of assay (in min)}) \times (\text{Volume (in ml) used in Colorimetric Determination})}$$

$$\text{Phenotypic Characterization of Bacteria: Phenotypic characterization of the strain was performed following the standard schemes given in the Bergey's Manual of Determinative Bacteriology}^{22}.$$

DNA Isolation from Bacteria: Total genomic DNA was isolated from the most promising alkaline protease producing isolate, using HiPer Bacterial genomic DNA extraction kit.

PCR Amplification and DNA Sequencing: After DNA isolation, amplification of 16s rRNA gene with 16s rRNA universal primers was done by PCR¹⁰. Thus, amplified 16s rRNA gene was further used for DNA sequencing. 16s rRNA gene PCR amplification and sequencing was performed by Genexplore Diagnostics and Research Centre Pvt. Ltd. Ahmedabad, Gujarat, India.

Molecular Characterization: The 16s rDNA sequence was subjected to Blast analysis against 16s rRNA gene database

in NCBI (National Centre for Biotechnology Information). A phylogenetic tree was constructed with related bacterial 16s rRNA gene sequences from NCBI using MEGA7 program by maximum likelihood option³¹. The evolutionary history was obtained using the Neighbor-Joining method. Based on 16S rRNA homology and phylogenetic tree analysis, the most promising isolate was identified. 16s rRNA gene sequence of the isolate was submitted to Genbank database (<https://www.ncbi.nlm.nih.gov/genbank>)¹⁰.

Effect of Physicochemical Factors on Crude Alkaline Protease Activity and Stability: The effect of pH, temperature, organic solvents and surfactants on crude alkaline protease, was investigated according to Cui et al¹² with slight modifications.

Effect of pH on Crude Alkaline Protease Activity and Stability: The range of pH 7.0–12.0 was selected to observe the optimal pH of the crude protease activity at 50°C for 20 min with 1% casein as a substrate. 200 mM sodium phosphate buffer was used for pH 7.0–8.0 and 200 mM glycine-NaOH buffer was used for pH 9.0–12.0. The influence of pH on crude protease stability was also determined. For this, crude alkaline protease filtrate was incubated in advance in different pH buffers of 7.0–12.0 for 60 min at 50°C. The incubations were then taken to measure the residual activity at 50°C at pH 12.0.

Effect of Temperature on Crude Alkaline Protease Activity and Stability: The range of temperature 20°C–70°C was selected to observe the optimal temperature of the crude protease activity at pH 12.0 for 20 min with 1% casein as a substrate. Thermal stability of the protease was also investigated. The crude protease was incubated for 60 min at different temperatures in advance (20, 30, 40, 50, 60 and 70°C). These incubations were then taken to examine the residual enzyme activity at 50°C and pH 12.0. The unheated protease was considered as 100%.

Effect of Organic Solvents and Surfactants on Crude Alkaline Protease Activity: The effect of various organic solvents on crude enzyme activity was examined. The crude enzyme was incubated in 100 mM glycine-NaOH buffer system (pH 12.0) in advance with 25% (v/v) of several organic solvents (isopropanol, methanol and acetone) and shaken in incubator at 150 rpm for 20 min at 50°C. The incubations were then taken to determine the residual activity under enzyme assay conditions. The protease activity was regarded as controls without any organic solvents.

The effects of 5 mM surfactant SDS and 1% (v/v) oxidizing agent H₂O₂ on crude protease activity were investigated by incubating these with crude enzymes in advance at 50°C for 20 min. The incubations were then taken to determine the residual enzyme activity under enzyme assay conditions. The protease activity was regarded as 100% without SDS or H₂O₂.

Results and Discussion

Enzyme Assay and Quantification of Alkaline Protease Activity:

After confirming the extracellular protease production of crude extract on CPYA solid media, crude filtrates of selected isolates were subjected to enzyme assay. Table 1 shows the amount of tyrosine released from casein and equivalent proteases units. Isolate no. PF11, PF 13, PF21 crude enzyme filtrates have 0.027U/ml, 0.025 U/ml, 0.036 U/ml protease activity respectively. Isolate no. PF21 produced highest protease activity of 0.036 U/ml among all and was selected for further study. It was showing good protease activity even at enzyme assay incubation temperature of 50°C at pH 12 indicating its thermal stability and alkaline nature. Contesini et al¹¹, Daoud et al¹³ and Yakul et al⁴⁶ have also reported bacterial alkaline protease activity at high temperatures and at high alkaline pH.

Phenotypic and Biochemical Characterization of RSCVS-PF21 (Isolate no. PF21): Morphological and biochemical characters of bacterial strain RSCVS-PF21 (Isolate no. PF21) are given in table 2. The organism is Gram positive, endospore forming, rod shaped and motile. It showed positive results for catalase, oxidase, NR (Nitrate reduction) test, MR (Methyl red) test, gelatine liquefaction, casein and starch hydrolysis tests and negative for citrate utilization and VP (Voges-Proskauer) test.

It could produce acids from glucose, sucrose, mannitol and arabinose. The phenotypic and biochemical features of the organism agreed with the description of the *Bacillus*, as given in Bergey's Manual of Determinative Bacteriology²². Thus, based on phenotypic characteristics, RSCVS-PF21 was putatively identified as a *Bacillus*.

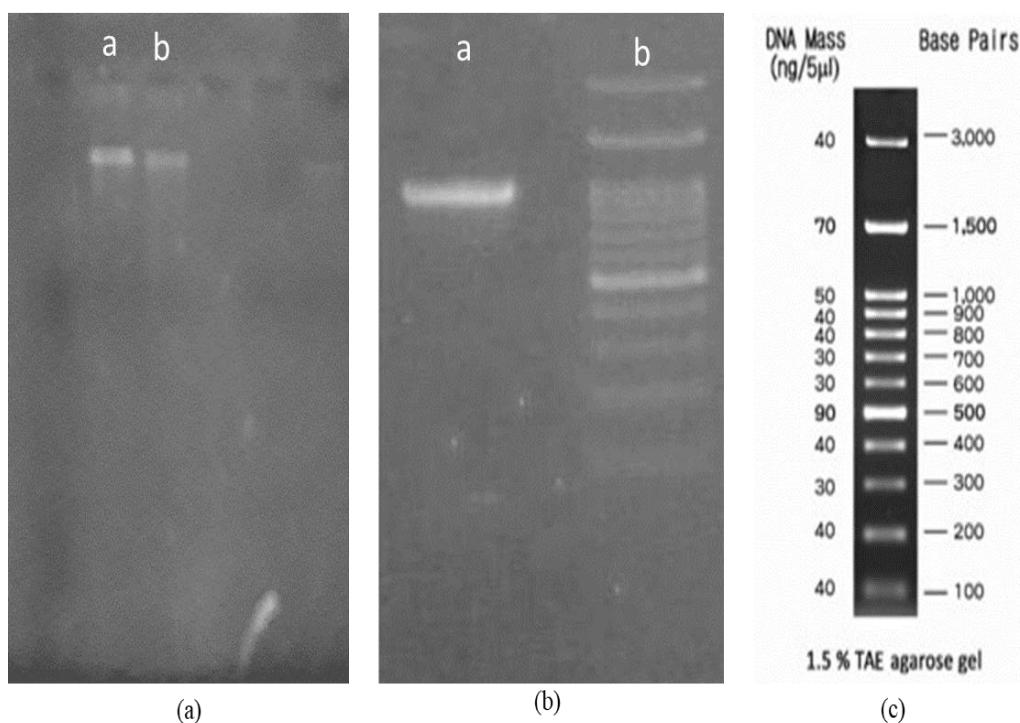

Molecular Identification: According to Chauhan and Mishra¹⁰, the molecular identification of isolate no. PF21 was done using 16S rRNA gene homology. DNA was isolated and about 1112 bp consensus sequence was obtained after amplification of 16s rRNA gene with 357F and 1391R universal primers and DNA sequencing of amplified product (Figure 1).

Table 1
Alkaline protease activity of culture filtrate of selected bacterial isolates from poultry farm soil.

S.N.	Isolate No.	Tyrosine released (μg/ml)	Enzyme unit (μmol/min/ml)
1	PF11	6.1	0.027
2	PF13	5.7	0.025
3	PF21	8.1	0.036

Table 2
Morphological and biochemical characterization of RSCVS-PF21

S.N.	Character	Result
1	Morphology	Rods
2	Spore forming	+
3	Motility	+
4	Gram	+
5	Catalase test	+
6	Oxidase test	+
7	Methyl red test	+
8	Voges-Proskauer Test	-
9	Nitrate reduction test	+
10	Citrate utilization test	-
11	Gelatin hydrolysis	+
12	Casein hydrolysis	+
13	Starch hydrolysis	+
14	D-Glucose	+
15	Sucrose	+
16	D-Mannitol	+
17	L-Arabinose	+

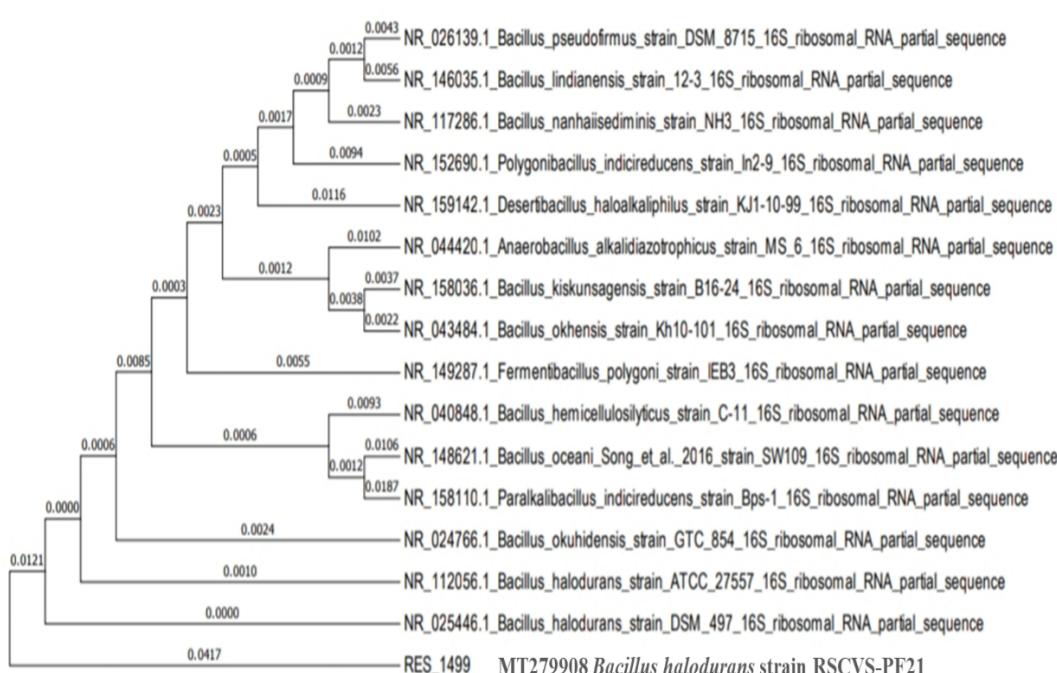
Figure 1: Agarose Gel Electrophoresis of isolated genome DNA and amplified 16s rRNA gene of Isolate no. PF21.
(a) Isolated genome DNA of Isolate no. PF21. Both lane a and lane b, denotes the genome DNA of Isolate no. PF21, (b) 16s rRNA gene amplification with 357F forward and 1391R reverse, Universal 16s rRNA primers.
Lane a: Amplified 1112 bp PCR product; Lane b: HiMedia 100bp DNA ladder, (c) HiMedia 100bp DNA ladder image with band size.

According to Chauhan and Mishra¹⁰, the molecular identification of isolate no. PF21 was done using 16S rRNA gene homology. A phylogenetic tree was constructed using MEGA7 program with closely related 16s rRNA gene sequences of other bacillus species (Figure 2). Based on both, 16S rRNA homology and phylogenetic tree analysis, the isolate no. PF21 was identified as *Bacillus halodurans*

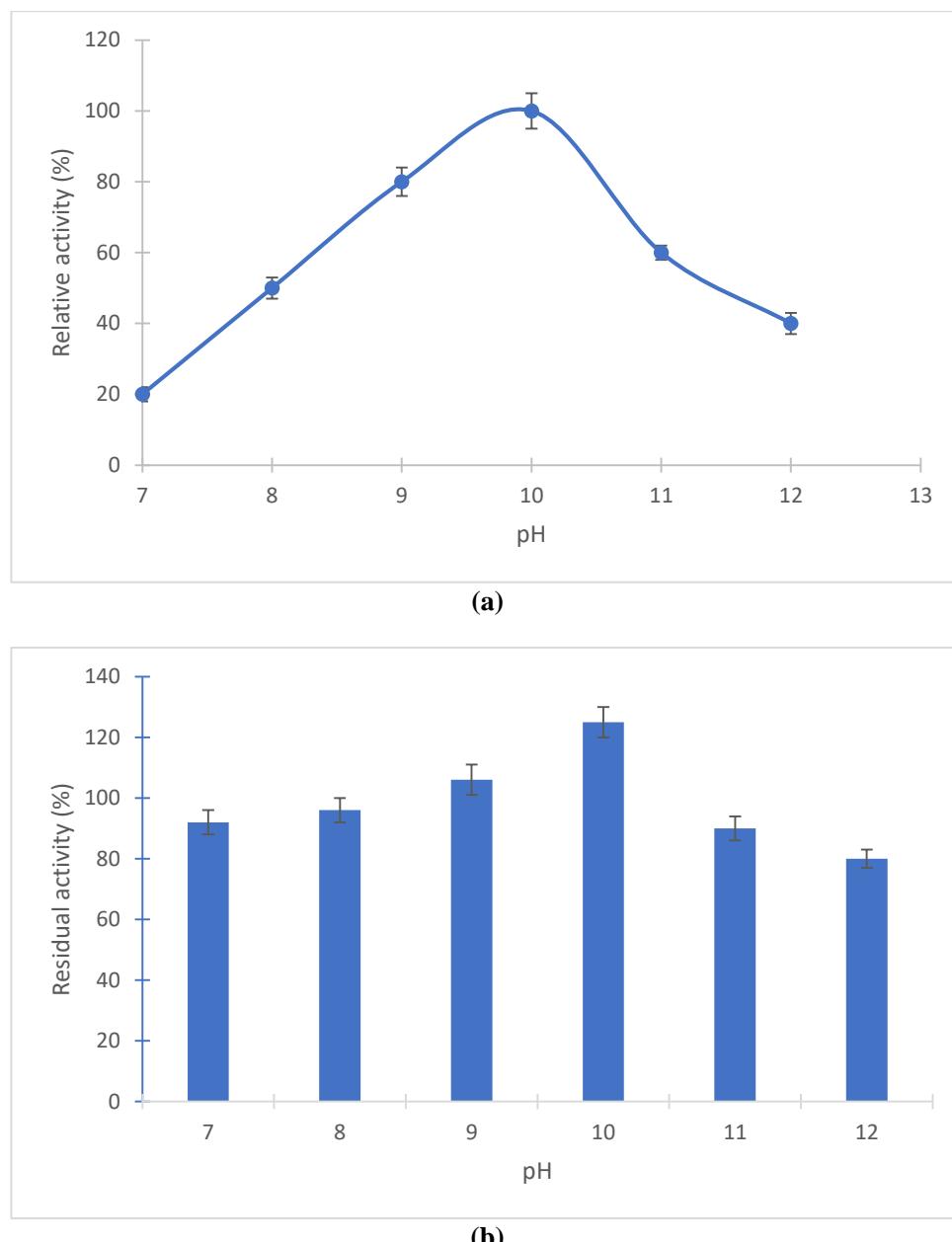
RSCVS-PF21. 16s rRNA gene sequence was submitted to Genbank database (<https://www.ncbi.nlm.nih.gov/genbank>) with accession no. MT279908. It was found by analysis with nucleotide BLAST tool that 16S rRNA sequence of isolate no. PF21 had 95.64 % identity with the sequence of *Bacillus halodurans* DSM497 (Genbank Accession number: NR025446).

Even though *Bacillus halodurans* DSM497 was not reported to produce alkaline protease^{8,15,35} some other identical bacteria were *Bacillus halodurans* strain ATCC 27557 (95.13 %) and *Bacillus okuhidensis* strain GTC 854 (95.03 %), *Fermentibacillus polygoni* strain IEB3 (94.02 %), *Bacillus nanhaiisediminis* strain NH3 (94.02 %). However recently some *Bacillus halodurans* strains were reported to produce alkaline proteases^{13,46}. Phenotypically also *Bacillus halodurans* RSCVS-PF21 was related with many other alkaline proteases producing bacillus species, having long, rod shaped, Gram positive, white colony, motile and spore forming characteristics.

Effect of pH on Activity and Stability of the Crude Alkaline Protease from *Bacillus halodurans* RSCVS-PF21: The influence of pH on crude filtrate protease activity of strain *Bacillus halodurans* RSCVS-PF21 (Figure 3a) was examined with the pH range from 7.0 to 12.0 at 50°C. The crude protease from *Bacillus halodurans* RSCVS-PF21 showed high activity in a broad pH range of 9.0–11.0 and the optimal pH was about 10.0. The relative activity of the crude enzyme was 60% at pH 11.0 and 40% at pH 12.0.


Results showed that crude protease was alkaline protease because it showed high enzyme activity in alkaline condition. Alkaline proteases from *Bacillus* spp. have optimal pH values usually at pH 9–10, e.g. *B. subtilis* PE-11 (pH 10)², *Bacillus laterosporous* (pH 9)⁵, *Bacillus* sp. B001 (pH 10)¹⁴ and *B. licheniformis* KBDL4 (pH 10)³⁶. Alkaline proteases from other bacteria such as *Pseudomonas aeruginosa*^{37,38}, *Halogeometricum borinquense*⁴⁵, *Streptomyces gulbargensis* and *Streptomyces albidoflavus*¹ also showed optimum activity at pH 9–10. However, there are also reports on alkaline proteases with higher optimal pH

values e.g. *Streptomyces* sp. (pH 11.5)⁴⁷ and *Bacillus clausii* (pH 12)²⁷. *Subtilisin carlsberg*, a commercial detergent enzyme, produced by *Bacillus licheniformis* has also shown maximum activity at pH values of 8–10.5²³. High enzyme activity in alkaline conditions is a significant element of nearly all detergent enzymes⁴. This was also described by Hadj-Ali et al²¹, Li et al³³, Daoud et al¹³ and Yakul et al⁴⁶.


The activity of the crude enzyme from *Bacillus halodurans* RSCVS-PF21 (Figure 3b) was very stable at pH between 7.0 and 12.0 (~80%). This was in accordance to study by Tsai⁴³ et al. 1988 and Jaouadi²⁵ et al. 2008, which reported that protease in detergents require broad pH stability (9.0–11.0). From above discussion, it was clear that the crude enzyme produced by strain *Bacillus halodurans* RSCVS-PF21 might be useful in the detergent industry as well as in other industrial applications, which require high alkaline pH stability of enzymes.

Effect of Temperature on Activity and Stability of the Crude Alkaline Protease from *Bacillus halodurans* RSCVS-PF21: The results showed that the crude alkaline protease from *Bacillus halodurans* RSCVS-PF21 (Figure 4a) was active from 20 to 70°C temperature with an optimal temperature at ~ 40°C. The relative activities of crude alkaline protease from strain *Bacillus halodurans* RSCVS-PF21 were about ~88% and ~84% at 50 and 60°C respectively.

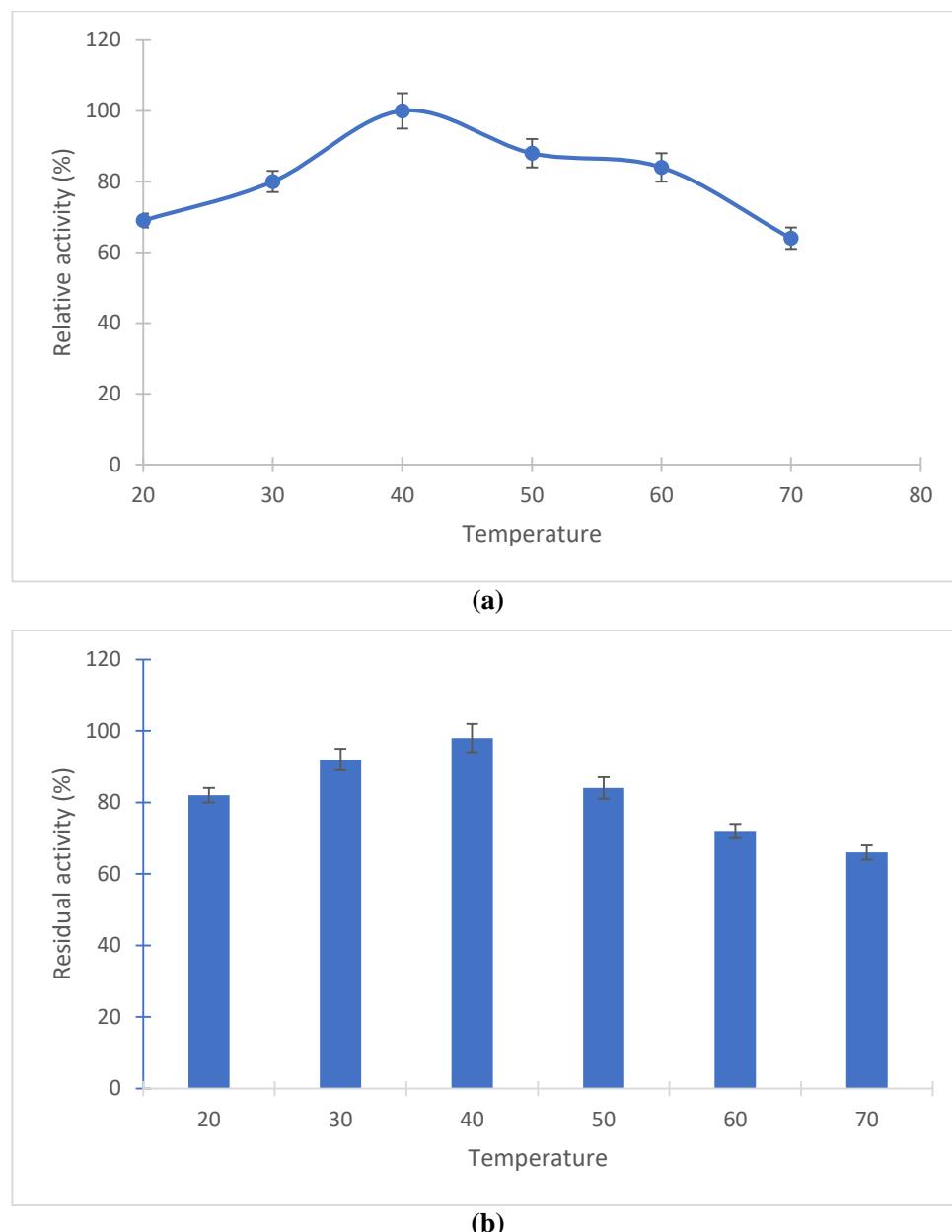
The low optimum temperature of crude filtrate, was in accordance with lower optimum temperatures (37–40°C) of alkaline proteases reported by Chakrabarti et al⁹, Gupta et al¹⁹ and Tremacoldi et al⁴².

Figure 2: Phylogenetic analysis of *Bacillus halodurans* RSCVS-PF21, based on 16s rRNA sequences of other related species.

Figure 3: The effect of pH on (a) activity and (b) stability of the crude alkaline protease from *Bacillus halodurans* RSCVS-PF21. (a) The crude enzyme activity was tested in different pH buffer solutions at 50°C. The crude enzyme activity was maximum at pH 10.0 which was regarded as 100%. (b) The crude protease stability against pH was tested after the crude enzyme was incubated in advance in different buffer solutions for 60 min at 50°C. The residual crude enzyme activity was tested at 50°C and pH 12.0. The crude enzyme activity was regarded as 100% without incubating.

However, the optimal temperature of the protease was reported 60°C from *B. pumilus*²⁸, *Bacillus subtilis* PE-11², *Bacillus mojavensis*⁶, *Bacillus cereus* BG1¹⁷ and *Bacillus* sp.¹⁴ Higher temperature optima have also been reported for some bacterial alkaline proteases e.g. *Bacillus licheniformis* MP1 (70°C)²⁶ and *Bacillus* sp. MLA 64 (95°C)³². High alkaline protease activity at high temperature was also reported recently, by Daoud et al¹³, Razzaq et al³⁹ and Yakul et al⁴⁶.

Thermostability investigations of the crude protease from *Bacillus halodurans* RSCVS-PF21 (Figure 4b) indicated


that the crude protease enzymes were stable within temperatures 50°C after 60 min incubation. The enzymes remained fully active after 60 min incubation at 50°C. Even at 60 and 70°C, the residual protease activity from *Bacillus halodurans* RSCVS-PF21 was 72% and 66% respectively. It showed that crude enzyme could be used under moderate to high heating conditions.

Hutadilok-Towatana et al²⁴, Haddar et al²⁰ and Deng et al¹⁴ also reported thermal stability of alkaline proteases at higher temperatures. Thermal stability is a superior quality for enzyme application in laundry detergent formulations¹⁹.

Effect of Surfactant and Organic Solvents on Activity of Crude Alkaline Protease from *Bacillus halodurans* RSCVS-PF21: A good protease used in detergent industry must be effective in wash performance and it should be stable and compatible with other detergent components such as oxidizing agents, surfactants etc.²⁹

The crude protease filtrates from *Bacillus halodurans* RSCVS-PF21 were preincubated at 50°C for 20 min existing with SDS and H₂O₂ and the residual enzyme activity was determined at 50°C and pH 12.0 (Table 3). Crude enzyme was found to be very stable with the SDS at 5 mM. This differed from the study by Hadj-Ali et al²¹ who reported that

inhibition of enzyme activity with SDS was a common characteristic of serine alkaline proteases. Oxidizing agents H₂O₂ at 1% (v/v) showed a moderate inhibition. Although, oxidizing agents and surfactants had been reported to destabilize several alkaline proteases, the crude enzymes from *Bacillus halodurans* RSCVS-PF21 seemed very stable when these detergent additives were present. The influences of enzyme activity by different organic solvents were determined at 25% concentration at 50°C and pH 12.0. The crude enzyme activities of *Bacillus halodurans* RSCVS-PF21 (Table 3) were enhanced by methanol and acetone while it was almost not affected by isopropanol.

Figure 4: Effect of temperature on the (a) activity and (b) stability of the crude protease from *Bacillus halodurans* RSCVS-PF21. (a) The activity of the protease enzyme was tested at various temperatures (20–70°C). The crude enzyme activity was maximum at 40°C regarded as 100%. (b) The crude protease stability against temperature was examined after these were incubated under temperatures between 20 and 70°C for 60 min. The residual activity was tested under the standard assay conditions. The enzyme activity incubating was considered as 100% without incubation.

Table 3
Effect of Surfactant and Organic Solvents on activity of crude alkaline protease from *Bacillus halodurans* RSCVS-PF21

S.N.	Additives	Concentration	Activity (%)
1	None	-	100
2	SDS	5mM	90 +/- 1
3	H ₂ O ₂	1 % (v/v)	85 +/- 1.2
4	Methanol	25 % (v/v)	120 +/- 2.2
5	Isopropanol	25 % (v/v)	102 +/- 1.5
6	Acetone	25 % (v/v)	115 +/- 1.2

It can be concluded that the crude enzyme produced by *Bacillus halodurans* RSCVS-PF21 was highly stable in these organic solvents. Kumar and Bhalla³⁰ and Aksoy et al³ have also reported high stability of alkaline proteases with organic solvents. This property can be used in ester synthesis.

Conclusion

Many alkaline proteases producing bacterial isolates were isolated from soils of different habitats of different localities of Vindhya region, Madhya Pradesh, India. It was found that very few bacterial colonies appeared on pH 12 on CPYA solid media. No fungal colony appeared even after 24 to 36 h incubation on pH 12. Only few bacterial isolates were able to hydrolyse casein. Out of several proteolytic isolates new bacterial strain was identified as *Bacillus halodurans* RSCVS-PF21 (Genbank accession no. MT279908, based on phenotypic, biochemical and molecular characterizations.

This could produce extracellular alkaline proteases, which showed high crude enzyme activity even at pH 12 and 50°C temperature. Crude enzymes had very high pH optima (10-11) and were stable and active on broad pH range (7-12) (>80 % residual activity). It showed optimum temperature at 40°C and was stable and active even beyond 50°C temperatures (> 60 % residual activity). Crude protease was also stable in presence of surfactants and oxidizing agents which was an attractive feature for their potential use as a detergent additive. It was also highly stable in different organic solvents, so it can also be used in ester synthesis.

Thus, from above it is clear that novel alkaline proteases producing bacterial strain investigated from Vindhya region, M.P., India can be potential candidates in industrial applications which require protease activity in extreme conditions. The leads obtained in this investigation will form a valuable baseline database for future researchers in the region.

Acknowledgement

This work was carried out at Centre for Biotechnology Studies, Awadhesh Pratap Singh University Rewa, Madhya Pradesh, India and was supported by facilities and financial resources available to the centre, which are gratefully acknowledged.

References

1. Abdel-Aziz M.S., Hamed A.A., Ghaly M.F. and EI-Shafei H.A., Purification and characterization of alkaline protease from marine *Streptomyces albidoflavus*, *Journal of Applied Sciences Research*, **8**, 3707-3716 (2012)
2. Adinarayana K., Ellaiah P. and Prasad D.S., Purification and partial characterization of thermostable serine alkaline protease from a newly isolated *Bacillus subtilis* PE11, *American Association of Pharmaceutical Scientists*, **4**, 1-9 (2003)
3. Aksoy S.C., Uzel A. and Tuna E.E.H., Extracellular serine proteases produced by *Thermoactinomyces* strains from hot springs and soils of West Anatolia, *Annals of Microbiology*, **62**, 483-492 (2012)
4. Anwar A. and Saleemudin M., Alkaline protease, A review, *Bioresource Technology*, **6**, 175-183 (1998)
5. Arulmani M., Aparanjni K., Vasanthi K., Arumugam P., Arivuchelvi M. and Kalachelvan P.T., Purification and partial characterization of serine protease from thermostable alkaliphilic *Bacillus laterosporous*-AKI, *World Journal of Microbiology and Biotechnology*, **23**, 475-481 (2007)
6. Beg Q.K. and Gupta R., Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from *Bacillus mojavensis*, *Enzyme and Microbial Technology*, **32**(2), 294-304 (2003)
7. Bhunia B., Basak B. and Dey A.A., review on production of serine alkaline protease by *Bacillus* spp., *Journal of Biochemical Technology*, **3**, 448-457 (2012)
8. Boyer E.E., Ingle M.B. and Mercer G.D., *Bacillus alcalophilus* subsp. *halodurans* subsp. nov., an alkaline amylase producing alkaliphilic organism, *International Journal of Systematic and Evolutionary Microbiology*, **23**, 238-242 (1973)
9. Chakrabarti S.K., Matsumura N. and Ranu R.S., Purification and characterization of an extracellular alkaline serine protease from *Aspergillus terreus*, *Current Microbiology*, **40**, 239-244 (2000)
10. Chauhan R.S. and Mishra R.M., Characterization of Alkaline Protease Producing *Bacillus Halodurans* RSCVS-PF21 Isolated from Poultry Farm Soil, *Biosciences, Biotechnology Research Asia*, **17**(2), 385-392 (2020)
11. Contesini F.J., Melo R.R. and Sato H.H., An overview of *Bacillus* proteases, from production to application, *Critical Reviews in Biotechnology*, **38**(3), 321-334 (2018)

12. Cui H., Wang L. and Yu Y., Production and characterization of alkaline protease from a high yielding and moderately halophilic strain of SD11 marine bacteria, *Journal of Chemistry*, **2015**, 1–8 (2015)

13. Daoud L., Hmani H., Ali M.B., Jlidi M. and Ali M.B., An Original Halo-Alkaline Protease from *Bacillus halodurans* Strain US193, Biochemical Characterization and Potential Use as Bio-Additive in Detergents, *Journal of Polymers and the Environment*, **26**, 23–32 (2018)

14. Deng A., Wu J., Zhang Y., Zhang G. and Wen T., Purification and characterization of a surfactant-stable high-alkaline protease from *Bacillus* sp. B001, *Bioresource Technology*, **101**(18), 7111-7 (2010)

15. Fritze D., Flossdorf J. and Claus D., Taxonomy of alkaliphilic *Bacillus* strains, *International Journal of Systematic Bacteriology*, **40**, 92-97 (1990)

16. Genckal H. and Tari C., Alkaline protease production from alkaliphilic *Bacillus* sp. isolated from natural habitats, *Enzyme and Microbial Technology*, **39**, 703–710 (2006)

17. Ghorbel-Frikha B., Sellami-Kamoun A., Fakhfakh N., Haddar A., Manni L. and Nasri M., Production and purification of a calcium-dependent protease from *Bacillus cereus* BG1, *Journal of Industrial Microbiology and Biotechnology*, **32**(5), 186–194 (2005)

18. Guleria S., Walia A., Chauhan A. and Shirkot C.K., Purification and characterization of detergent stable alkaline protease from *Bacillus amyloliquefaciens* SP1 isolated from apple rhizosphere, *Journal of Basic Microbiology*, **56**(2), 138–152 (2016)

19. Gupta A., Roy I., Patel R.K., Singh S.P., Khare S.K. and Gupta M.N., One-step purification and characterization of an alkaline protease from haloalkaliphilic *Bacillus* sp., *Journal of Chromatography A*, **1075**, 103-108 (2005)

20. Haddar A., Bougatef A., Agrebi R., Sellami-Kamoun A. and Nasri M.A., novel surfactant-stable alkaline serine-protease from a newly isolated *Bacillus mojavensis* A21, Purification and characterization, *Process Biochemistry*, **44**(1), 29–35 (2009)

21. Hadj-Ali N.E., Agrebi R., Ghorbel-Frikha B., Sellami K., Kanoun S. and Nasri M., Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated *Bacillus licheniformis* NH1, *Enzyme and Microbial Technology*, **40**(4), 515–523 (2007)

22. Holt J.K., Krieg N.R., Sneath P.H.A. and Staley J.T., Bergey's Manual of Determinative Bacteriology, *Williams and Williams*, Baltimore, **9**, 559-562 (1994)

23. Horikoshi K. Alkaliphiles, Some applications of their products for biotechnology, *Microbiology and Molecular Biology Reviews*, **63**, 735-750 (1999)

24. Hutadilok-Towatana N., Painupong A. and Suntinanalert P., Purification and characterization of an extracellular protease from alkaliphilic and thermophilic *Bacillus* sp. PS719, *Journal of Bioscience and Bioengineering*, **5**, 581-587 (1999)

25. Jaouadi B., Ellouz-Chaabouni S., Rhimi M. and Bejar S., Biochemical and molecular characterization of a detergent stable serine alkaline protease from *Bacillus pumilus* CBS with high catalytic efficiency, *Biochimie*, **90**, 1291–1305 (2008)

26. Jellouli K., Ghorbel-Bellaaj O., Ayed H.B., Manni L., Agrebi R. and Nasri M., Alkaline-protease from *Bacillus licheniformis* MP1, Purification characterization and potential application as a detergent additive and for shrimp waste deproteinization, *Process Biochemistry*, **46**, 1248-1256 (2011)

27. Kazan D., Bal H., Denizci A.A., Ozturk N.C., Ozturk H.U., Dilgimen A.S., Ozturk D.C. and Erarslan A., Studies on alkaline serine protease produced by *Bacillus clausii* GM2E 22, *Preparative Biochemistry & Biotechnology*, **39**, 289-307 (2009)

28. Kumar C.G., Joo H.S., Koo Y.M., Paik S.R. and Chang C.S., Thermostable alkaline protease from a novel marine haloalkaliphilic *Bacillus clausii* isolate, *World Journal of Microbiology and Biotechnology*, **20**, 351-357 (2004)

29. Kumar C.G. and Takagi H., Microbial alkaline protease, From a bioindustrial viewpoint, *Biotechnology Advances*, **17**, 561-594 (1999)

30. Kumar D. and Bhalla T.C., Microbial proteases in peptide synthesis, approaches and applications, *Applied Microbiology and Biotechnology*, **68**, 726–736 (2005)

31. Kumar S., Stecher G. and Tamura K., MEGA7, Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, *Molecular Biology and Evolution*, **33**(7), 1870-4 (2016)

32. Lagzian M. and Asoodeh A., An extremely thermotolerant alkaliphilic subtilisin-like protease from hyperthermophilic *Bacillus* sp. MLA64, *International Journal of Biological Macromolecules*, **51**, 960-967 (2012)

33. Li S., He B.F., Bai Z.Z. and Ouyang P.K., A novel organic solvent-stable alkaline protease from organic solvent-tolerant *Bacillus licheniformis* YP1A, *Journal of Molecular Catalysis B: Enzymatic*, **56**(2-3), 85–88 (2009)

34. Mkhize Nomthandazo and Pullabhotla Viswanadha Srirama Rajasekhar, Advanced Oxidation Processes for the oxyfunctionalisation of 1,2-dichlorobenzene: a review, *Res. J. Chem. Environ.*, **28**(3), 94-103 (2024)

35. Nielsen P., Fritze D. and Priest F.G., Phenetic diversity of alkaliphilic *Bacillus* strains, proposal for nine new species, *Microbiology*, **141**, 1745-1761 (1995)

36. Pathak A.P. and Deshmukh K.B., Alkaline protease production, extraction and characterization from alkaliphilic *Bacillus licheniformis* KBDL 4, A Lonar Soda lake isolate, *Indian Journal of Experimental Biology*, **50**, 569-576 (2012)

37. Patil U. and Chaudhari A., Purification and characterization of solventtolerant, thermostable, alkaline metalloprotease from alkaliphilic *Pseudomonas aeruginosa* MTCC 7926, *Journal of Chemical Technology and Biotechnology*, **84**, 1255-1262 (2009)

38. Rahaman R.N.Z.R.A., Geok L.P., Basri M. and Salleh A.B., An organic solventstable alkaline protease from *Pseudomonas*

aeruginosa strain K, Enzyme purification and characterization, *Enzyme and Microbial Technology*, **39**, 1484-1491 (2006)

39. Razzaq A., Shamsi S., Ali A., Ali Q., Sajjad M., Malik A. and Ashraf M., Microbial Proteases Applications, *Frontiers in Bioengineering and Biotechnology*, **7(110)**, 1-20 (2019)

40. Sharma K.M., Kumar R., Panwar S. and Kumar A., Microbial alkaline proteases, Optimization of production parameters and their properties, *Journal of Genetic Engineering and Biotechnology*, **15(1)**, 115-126 (2017)

41. Thebti W., Riahi Y. and Belhadj O., Purification and characterization of a new thermostable, haloalkaline, solvent stable and detergent compatible serine protease from *Geobacillus toebii* strain LBT 77, *BioMed Research International*, **2016**, 1-8 (2016)

42. Tremacoldi C.R., Monti R., Selistre-De-Araujo H.S. and Carmona E.C., Purification and properties of an alkaline protease of *Aspergillus clavatus*, *World Journal of Microbiology and Biotechnology*, **23**, 295-299 (2007)

43. Tsai Y.C., Juang R.Y., Lin S.F., Chen S.W., Yamasaki M. and Tamura G., Production and further characterization of an alkaline elastase produced by alkaliphilic *Bacillus* strain Ya-B, *Applied and Environmental Microbiology*, **54**, 3156-3161 (1988)

44. Verma J. and Pandey S., Characterization of partially purified alkaline protease secreted by halophilic bacterium *Citricoccus* sp. isolated from agricultural soil of northern India, *Biocatalysis and Agricultural Biotechnology*, **17**, 605-612 (2019)

45. Vidyasagar M., Prakash S., Litchfield C. and Sreeramulu K., Purification and characterization of a thermostable, haloalkaliphilic extracellular serine protease from the extreme Halophilic archaeon *Halogeometricum borinquense* strain TSS101, *Archea*, **2**, 51-57 (2006)

46. Yakul K., Takenaka S., Nakamura K., Techapun C., Leksawadi N., Seesuriyachan P., Atanabe M. and Chaiyaso T., Characterization of thermostable alkaline protease from *Bacillus halodurans* SE5 and its application in degumming coupled with sericin hydrolysate production from yellow cocoon, *Process Biochemistry*, **78**, 63-70 (2019)

47. Yum D.Y., Hee-Chul C., Bai D.H., Oh D.H. and Yu, J.H., Purification and characterization of alkaline serine protease from an alkaliphilic *Streptomyces* sp., *Bioscience, Biotechnology and Biochemistry*, **58**, 470-474 (1994).

(Received 26th December 2024, accepted 10th February 2025)